Protein Domain : IPR005440

Type:  Family Name:  Gamma-aminobutyric-acid A receptor, gamma 3 subunit
Description:  Neurotransmitter ligand-gated ion channels are transmembrane receptor-ion channel complexes that open transiently upon binding of specific ligands, allowing rapid transmission of signals at chemical synapses [, ]. Five of these ion channel receptor families have been shown to form a sequence-related superfamily:Nicotinic acetylcholine receptor (AchR), an excitatory cation channel in vertebrates and invertebrates; in vertebrate motor endplates it is composed of alpha, beta, gamma and delta/epsilon subunits; in neurons it is composed of alpha and non-alpha (or beta) subunits [].Glycine receptor, an inhibitory chloride ion channel composed of alpha and beta subunits [].Gamma-aminobutyric acid (GABA) receptor, an inhibitory chloride ion channel; at least four types of subunits (alpha, beta, gamma and delta) are known [].Serotonin 5HT3 receptor, of which there are seven major types (5HT3-5HT7) [].Glutamate receptor, an excitatory cation channel of which at least three types have been described (kainate, N-methyl-D-aspartate (NMDA) and quisqualate) [].These receptors possess a pentameric structure (made up of varying subunits), surrounding a central pore. All known sequences of subunits from neurotransmitter-gated ion-channels are structurally related. They are composed of a large extracellular glycosylated N-terminal ligand-binding domain, followed by three hydrophobic transmembrane regions which form the ionic channel, followed by an intracellular region of variable length. A fourth hydrophobic region is found at the C-terminal of the sequence [, ].Gamma-aminobutyric acid type A (GABAA) receptors are members of the neurotransmitter ligand-gated ion channels: they mediate neuronal inhibition on binding GABA. The effects of GABA on GABAA receptors are modulated by a range of therapeutically important drugs, including barbiturates, anaesthetics and benzodiazepines (BZs) []. The BZs are a diverse range of compounds, including widely prescribed drugs, such as librium and valium, and their interaction with GABAA receptors provides the most potent pharmacologicalmeans of distinguishing different GABAA receptor subtypes.GABAA receptors are pentameric membrane proteins that operate GABA-gated chloride channels []. Eight types of receptor subunit have been cloned, with multiple subtypes within some classes: alpha 1-6, beta 1-4, gamma 1-4, delta, epsilon, pi, rho 1-3 and theta [, ]. Subunits are typically 50-60kDa in size and comprise a long N-terminal extracellular domain, containing a putative signal peptide and a disulphide-bonded beta structural loop; 4 putative transmembrane (TM) domains; and a large cytoplasmic loop connecting the third and fourth TM domains. Amongst family members, the large cytoplasmic loop displays the most divergence in terms of primary structure, the TM domains showing the highest level of sequence conservation [].Most GABAA receptors contain one type of alpha and beta subunit, and a single gamma polypeptide in a ratio of 2:2:1 [], though in some cases other subunits such as epsilon or delta may replace gamma. The BZ binding site is located at the interface of adjacent alpha and gamma subunits; therefore, the type of alpha and gamma subunits present is instrumental in determining BZ selectivity and sensitivity. Receptors can be categorised into 3 groups based on their alpha subunit content and, hence, sensitivity to BZs: alpha 1-containing receptors have greatest sensitivity towards BZs (type I); alpha 2, 3 and 5-containing receptors have similar but distinguishable properties (type II); and alpha 4- and 6-containing assemblies have very low BZ affinity []. A conserved histidine residue in the alpha subunit of type I and II receptors is believed to be responsible for BZ affinity []. Three mammalian gamma subunits have been identified (gamma 1 to 3), each encoded by a separate gene, plus an avian gamma 4 subunit. The presence of a gamma 2 subunit, together with alpha 1, confers `classical' BZ-binding activity to GABAA receptors; substitution for gamma 1 or 3 leads to an altered binding profile for BZs []. The gamma 2 gene undergoes alternative exon splicing leading to the generation of two isoforms that differ by an additional 24-bp exon in the large putative cytoplasmic domain []. The isoforms are termed gamma 2L (long) and gamma 2S (short), and are ubiquitously expressed. The gamma 2L splice variant has been implicated in potentiation of GABAA receptors by ethanol.This entry represents the gamma 3 subunit. Short Name:  GABBAg3_rcpt

0 Child Features

3 Contains

DB identifier Type Name
IPR006029 Domain Neurotransmitter-gated ion-channel transmembrane domain
IPR006202 Domain Neurotransmitter-gated ion-channel ligand-binding domain
IPR018000 Conserved_site Neurotransmitter-gated ion-channel, conserved site

1 Cross References

Identifier
PR01623

0 Found In

4 GO Annotations

GO Term Gene Name
GO:0004890 IPR005440
GO:0006821 IPR005440
GO:0007214 IPR005440
GO:0016021 IPR005440

4 Ontology Annotations

GO Term Gene Name
GO:0004890 IPR005440
GO:0006821 IPR005440
GO:0007214 IPR005440
GO:0016021 IPR005440

1 Parent Features

DB identifier Type Name
IPR005437 Family Gamma-aminobutyric-acid A receptor, gamma subunit

0 Proteins

13 Publications

First Author Title Year Journal Volume Pages PubMed ID
            1721053
            1846404
            11712530
            8537206
            9647870
            11282419
            10449790
            2538761
            10026168
            18446614
            15383648
            18760291
            15165736