Protein Domain : IPR002243

Type:  Family Name:  Chloride channel ClC-1
Description:  Chloride channels (CLCs) constitute an evolutionarily well-conserved family of voltage-gated channels that are structurally unrelated to the other known voltage-gated channels. They are found in organisms ranging from bacteria to yeasts and plants, and also to animals. Their functions in higher animals likely include the regulation of cell volume, control of electrical excitability and trans-epithelial transport [].The first member of the family (CLC-0) was expression-cloned from the electric organ of Torpedo marmorata [], and subsequently nine CLC-like proteins have been cloned from mammals. They are thought to function as multimers of two or more identical or homologous subunits, and they have varying tissue distributions and functional properties. To date, CLC-0, CLC-1, CLC-2, CLC-4 and CLC-5 have been demonstrated to form functional Cl- channels; whether the remaining isoforms do so is either contested or unproven. One possible explanation for the difficulty in expressing activatable Cl- channels is that some of the isoforms may function as Cl- channels of intracellular compartments, rather than of the plasma membrane. However, they are all thought to have a similar transmembrane (TM) topology, initial hydropathy analysis suggesting 13 hydrophobic stretches long enough to form putative TM domains []. Recently, the postulated TM topology has been revised, and it now seems likely that the CLCs have 10 (or possibly 12) TM domains, with both N- and C-termini residing in the cytoplasm [].A number of human disease-causing mutations have been identified in the genes encoding CLCs. Mutations in CLCN1, the gene encoding CLC-1, the major skeletal muscle Cl- channel, lead to both recessively and dominantly-inherited forms of muscle stiffness or myotonia []. Similarly, mutations in CLCN5, which encodes CLC-5, a renal Cl- channel, lead to several forms of inherited kidney stone disease []. These mutations have been demonstrated to reduce or abolish CLC function.CLC-1 was the first member of the CLC family cloned from mammalian species [], and has 998 amino acid residues (human isoform). It is principallyexpressed in skeletal muscle, but low transcript levels can be detected in kidney, heart and smooth muscle. In skeletal muscle, it gives rise to themajority of the muscle membrane Cl-conductance (which accounts for ~70-80% of the total resting conductance). These channels are partially open underresting conditions, and it is likely that following a prolonged series of muscle action potentials, they act to reduce excitability, limiting tetanicactivation. As mentioned above, mutations in CLC-1 can cause recessive (Becker) as well as dominant (Thomsen) myotonia. Such mutations reducechannel function, rendering skeletal muscle hyperexcitable. This leads to defective muscle relaxation after voluntary contraction. Short Name:  Cl_channel-1

0 Child Features

2 Contains

DB identifier Type Name
IPR000644 Domain CBS domain
IPR014743 Domain Chloride channel, core

1 Cross References

Identifier
PR01112

0 Found In

3 GO Annotations

GO Term Gene Name
GO:0005247 IPR002243
GO:0006821 IPR002243
GO:0016020 IPR002243

3 Ontology Annotations

GO Term Gene Name
GO:0005247 IPR002243
GO:0006821 IPR002243
GO:0016020 IPR002243

1 Parent Features

DB identifier Type Name
IPR001807 Family Chloride channel, voltage gated

0 Proteins

6 Publications

First Author Title Year Journal Volume Pages PubMed ID
            9046241
            7581380
            2174129
            8559248
            9207144
            1659664