Protein Domain : IPR017972

Type:  Conserved_site Name:  Cytochrome P450, conserved site
Description:  Cytochrome P450 enzymes are a superfamily of haem-containing mono-oxygenases that are found in all kingdoms of life, and which show extraordinary diversity in their reaction chemistry. In mammals, these proteins are found primarily in microsomes of hepatocytes and other cell types, where they oxidise steroids, fatty acids and xenobiotics, and are important for the detoxification and clearance of various compounds, as well as for hormone synthesis and breakdown, cholesterol synthesis and vitamin D metabolism. In plants, these proteins are important for the biosynthesis of several compounds such as hormones, defensive compounds and fatty acids. In bacteria, they are important for several metabolic processes, such as the biosynthesis of antibiotic erythromycin in Saccharopolyspora erythraea(Streptomyces erythraeus).Cytochrome P450 enzymes use haem to oxidise their substrates, using protons derived from NADH or NADPH to split the oxygen so a single atom can be added to a substrate. They also require electrons, which they receive from a variety of redox partners. In certain cases, cytochrome P450 can be fused to its redox partner to produce a bi-functional protein, such as with P450BM-3 from Bacillus megaterium[], which has haem and flavin domains.Organisms produce many different cytochrome P450 enzymes (at least 58 in humans), which together with alternative splicing can provide a wide array of enzymes with different substrate and tissue specificities. Individual cytochrome P450 proteins follow the nomenclature: CYP, followed by a number (family), then a letter (subfamily), and another number (protein); e.g. CYP3A4 is the fourth protein in family 3, subfamily A. In general, family members should share >40% identity, while subfamily members should share >55% identity.Cytochrome P450 proteins can also be grouped by two different schemes. One scheme was based on a taxonomic split: class I (prokaryotic/mitochondrial) and class II (eukaryotic microsomes). The other scheme was based on the number of components in the system: class B (3-components) and class E (2-components). These classes merge to a certain degree. Most prokaryotes and mitochondria (and fungal CYP55) have 3-component systems (class I/class B) - a FAD-containing flavoprotein (NAD(P)H-dependent reductase), an iron-sulphur protein and P450. Most eukaryotic microsomes have 2-component systems (class II/class E) - NADPH:P450 reductase (FAD and FMN-containing flavoprotein) and P450. There are exceptions to this scheme, such as 1-component systems that resemble class E enzymes [, , ]. The class E enzymes can be further subdivided into five sequence clusters, groups I-V, each of which may contain more than one cytochrome P450 family (eg, CYP1 and CYP2 are both found in group I). The divergence of the cytochrome P450 superfamily into B- and E-classes, and further divergence into stable clusters within the E-class, appears to be very ancient, occurring before the appearance of eukaryotes.This entry represents a conserved site based around a highly conserved cysteine residue involved in binding haem iron in the fifth coordination site, which is found in the C-terminal regions of P450 proteins. Short Name:  Cyt_P450_CS

0 Child Features

0 Contains

1 Cross References

Identifier
PS00086

9 Found Ins

DB identifier Type Name
IPR001128 Family Cytochrome P450
IPR002403 Family Cytochrome P450, E-class, group IV
IPR002401 Family Cytochrome P450, E-class, group I
IPR002397 Family Cytochrome P450, B-class
IPR002974 Family Cytochrome P450, E-class, CYP52
IPR002399 Family Cytochrome P450, mitochondrial
IPR008066 Family Cytochrome P450, E-class, group I, CYP1
IPR008071 Family Cytochrome P450, E-class, group I, CYP2J-like
IPR020469 Family Cytochrome P450, CYP2 family

2 GO Annotations

GO Term Gene Name
GO:0016705 IPR017972
GO:0055114 IPR017972

2 Ontology Annotations

GO Term Gene Name
GO:0016705 IPR017972
GO:0055114 IPR017972

0 Parent Features

0 Proteins

4 Publications

First Author Title Year Journal Volume Pages PubMed ID
            16042601
            17023115
            15128046
            8637843