Protein Domain : IPR003012

Type:  Family Name:  Tetracycline transcriptional regulator, TetR
Description:  The antibiotic tetracycline has a broad spectrum of activity, acting to inhibit bacterial protein synthesis by binding to the 30S ribosomal subunit, which prevents the association of the aminoacyl-tRNA to the ribosomal acceptor A site. Tetracycline binding is reversible, therefore diluting out the antibiotic can reverse its effects. Tetracycline resistance genes are often located on mobile elements, such as plasmids, transposons and/or conjugative transposons, which can sometimes be transferred between bacterial species. In certain cases, tetracycline can enhance the transfer of these elements, thereby promoting resistance amongst a bacterial colony. There are three types of tetracycline resistance: tetracycline efflux, ribosomal protection, and tetracycline modification [, ]: Tetracycline efflux proteins belong to the major facilitator superfamily. Efflux proteins are membrane-associated proteins that recognise and export tetracycline from the cell. They are found in both Gram-positive and Gram-negative bacteria []. There are at least 22 different tetracycline efflux proteins, grouped according to sequence similarity: Group 1 are Tet(A), Tet(B), Tet(C), Tet(D), Tet(E), Tet(G), Tet(H), Tet(J), Tet(Z) and Tet(30); Group 2 are Tet(K) and Tet(L); Group 3 are Otr(B) and Tcr(3); Group 4 is TetA(P); Group 5 is Tet(V). In addition, there are the efflux proteins Tet(31), Tet(33), Tet(V), Tet(Y), Tet(34), and Tet(35).Ribosomal protection proteins are cytoplasmic proteins that display homology with the elongation factors EF-Tu and EF-G. Protection proteins bind the ribosome, causing an alteration in ribosomal conformation that prevents tetracycline from binding. There are at least ten ribosomal protection proteins: Tet(M), Tet(O), Tet(S), Tet(W), Tet(32), Tet(36), Tet(Q), Tet(T), Otr(A), and TetB(P). Both Tet(M) and Tet(O) have ribosome-dependent GTPase activity, the hydrolysis of GTP providing the energy for the ribosomal conformational changes. Tetracycline modification proteins include the enzymes Tet(37) and Tet(X), both of which inactivate tetracycline. In addition, there are the tetracycline resistance proteins Tet(U) and Otr(C).The expression of several of these tet genes is controlled by a family of tetracycline transcriptional regulators known as TetR. TetR family regulators are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity []. The TetR proteins identified in over 115 genera of bacteria and archaea share a common helix-turn-helix (HTH) structure in their DNA-binding domain. However, TetR proteins can work in different ways: they can bind a target operator directly to exert their effect (e.g. TetR binds Tet(A) gene to repress it in the absence of tetracycline), or they can be involved in complex regulatory cascades in which the TetR protein can either be modulated by another regulator or TetR can trigger the cellular response. This entry represents the tetracycline transcriptional repressor TetR, which binds to the Tet(A) gene to repress its expression in the absence of tetracycline []. Tet(A) is a membrane-associated efflux protein that exports tetracycline from the cell before it can attach to ribosomes and inhibit polypeptide chain growth. TetR occurs as a homodimer and uses two helix-turn-helix (HTH) motifs to bind tandem DNA operators, thereby blocking the expression of the associated genes, TetA and TetR. The structure of the class D TetR repressor protein [] involves 10 alpha-helices, with connecting turns and loops. The three N-terminal helices constitute the DNA-binding HTH domain, which has an inverse orientation compared with HTH motifs in other DNA-binding proteins. The core of the protein, formed by helices 5-10, is responsible for dimerisation and contains, for each monomer, a binding pocket that accommodates tetracycline in the presence of a divalent cation. Short Name:  Tet_transcr_reg_TetR

0 Child Features

3 Contains

DB identifier Type Name
IPR015893 Domain Tetracycline transcriptional regulator, TetR-like, C-terminal
IPR001647 Domain DNA-binding HTH domain, TetR-type
IPR004111 Domain Tetracycline transcriptional regulator, TetR, C-terminal

1 Cross References

Identifier
PR00400

0 Found In

2 GO Annotations

GO Term Gene Name
GO:0045892 IPR003012
GO:0046677 IPR003012

2 Ontology Annotations

GO Term Gene Name
GO:0045892 IPR003012
GO:0046677 IPR003012

0 Parent Features

0 Proteins

6 Publications

First Author Title Year Journal Volume Pages PubMed ID
            7707374
            16887689
            15837373
            1423217
            15944459
            8153629