Protein Domain : IPR003527

Type:  Conserved_site Name:  Mitogen-activated protein (MAP) kinase, conserved site
Description:  Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity []:Serine/threonine-protein kinasesTyrosine-protein kinasesDual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)Protein kinase function is evolutionarily conserved from Escherichia coli to human []. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation []. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [].Eukaryotic serine-threonine mitogen-activated protein (MAP) kinases are key regulators of cellular signal transduction systems and are conserved from Saccharomyces cerevisiae(Baker's yeast) to human beings. MAPK pathways are signalling cascades differentially regulated by growth factors, mitogens, hormones and stress which mediate cell growth, differentiation and survival. MAPK activity is regulated through a (usually) three-tiered cascade composed of a MAPK, a MAPK kinase (MAPKK, MEK) and a MAPK kinase kinase (MAPKK, MEKK). Substrates for the MAPKs include other kinases and transcription factors []. Mammals express at least fourdistinctly related groups of MAPKs, extracellularly-regulated kinases (ERKs), c-jun N-terminal kinases (JNKs), p38 proteins and ERK5. Plant MAPK pathways have attracted increasing interest, resulting in the isolation of a large number of different components of MAPK cascades. MAPKs play important roles in the signalling of most plant hormones and in developmental processes []. In the budding yeast S. cerevisiae, four separate but structurally related mitogen-activated protein kinase (MAPK)activation pathways are known, regulating mating, cell integrity and osmosity [].Enzymes in this family are characterised by two domains separated by a deep channel where potential substrates might bind. The N-terminal domain creates a binding pocket for the adenine ring of ATP, and the C-terminal domain contains the catalytic base, magnesium binding sites and phosphorylation lip []. Almost all MAPKs possess a conserved TXY motif in which both the threonine andtyrosine residues are phosphorylated during activation of the enzyme byupstream dual-specificity MAP kinase kinases (MAPKKs). Short Name:  MAP_kinase_CS

0 Child Features

1 Contains

DB identifier Type Name
IPR008271 Active_site Serine/threonine-protein kinase, active site

1 Cross References


6 Found Ins

DB identifier Type Name
IPR000719 Domain Protein kinase domain
IPR011009 Domain Protein kinase-like domain
IPR002290 Domain Serine/threonine/dual specificity protein kinase, catalytic domain
IPR008351 Family Mitogen-activated protein (MAP) kinase, JNK
IPR008352 Family Mitogen-activated protein (MAP) kinase, p38
IPR008349 Family Mitogen-activated protein (MAP) kinase, ERK1/2

3 GO Annotations

GO Term Gene Name Organism
GO:0004707 IPR003527
GO:0005524 IPR003527
GO:0006468 IPR003527

0 Parent Features

0 Proteins

9 Publications

First Author Title Year Journal Volume Pages PubMed ID